# **Analytical Techniques for Grade and Quality Control in Coal Mining**





#### **Topics**





Pulsed Fast & Thermal Neutron Activation (PFTNA)
Cross-belt Elemental Analysis of Coal



X-Ray Diffraction (XRD) & Computed Tomography (CT) Phase and Structural Analysis of Coal



X-ray Fluorescence (XRF) Elemental Analysis of Unashed Coal

# **Cross-belt Elemental Analysis of Coal**





#### Introduction



- Coal is a high-volume commodity
- Continuous grading necessary to determine appropriate pricing and use

- total moisture fixed carbon calorific value
- inherent moisture ash content HGI

- volatile matter
   total sulfur
   grain size

- Representative sampling is complicated and unreliable
- Cross-belt analyzers eliminate sampling difficulties by measuring the material on moving conveyor belts
- Cross-belt analyzers deliver "real-time" results, which can be used for process optimization



#### Introduction



- The majority of cross-belt analyzers are, in fact, neutron activation analyzers (NAA)
- Neutrons are used because:
  - they are highly-penetrating particles, which means they can access large volumes of material (often through reinforced conveyor belts)
  - 2. they interact with atomic nuclei and induce characteristic gamma (γ) photon emissions, which are also highly penetrating and can, therefore, escape the sample and enter the detector

# The principle





#### **Cross-section**



- The probability of interaction between neutrons and atomic nuclei is dependant on the so-called "neutron cross section"
  - 1. the target element
  - 2. the type of reaction (absorption, scattering, etc.)
  - 3. the incident particle energy



#### **Sources**



• The most common source of neutrons in cross-belt analyzers is the spontaneous fission of californium-252 by  $\alpha$ -decay

$$^{252}_{98}\mathrm{Cf} \rightarrow ^{248}_{96}\mathrm{Cm} + \alpha$$
 (where  $\alpha = 2p + 2n$ )

 70 % of neutrons produced by this process have energies between 0.3 and 1.8 MeV and a maximum energy of approximately
 6.5 MeV (low but detectable flux)

#### NO C AND O ANALYSIS!!!



#### Sources



- Neutron generators, like those used in our CNA<sup>3</sup> Coal, offer significant advantages over isotope-based sources:
  - 1. pulsed 14 MeV neutrons via the fusion of deuterium and tritium  ${}_{1}^{2}H+{}_{1}^{3}H \rightarrow n+{}_{2}^{4}He$
  - 2. programmable flux eliminates interruptive drift corrections and recalibrations and maintains precision
  - 3. the source can be switched off
  - reduced import and export limitations and safety requirements

#### **Electric Neutron Generator**





# **Safety**



#### Californium-252







Sodern Neutron Generator



natural background radiation

1.2 mSv/h

# **Neutron Activation Analysis**





# **Coal analysis**





- Real-time elemental analysis
   (H, C, N, O, Na, Al, Si, S, Fe, K, Ca, Ti & Mn as received basis)
- Accurate calculation of:
  - 1. ash content
  - 2. moisture content
  - 3. calorific value

#### **Example data**





# **CNA<sup>3</sup> Coal positions**





### **Benefits for power plants**



- Improved combustion efficiency by approximately 0.4%
- Reduced boiler downtime and, therefore, production
  - ✓ reduced costs associated with oil restarts.
  - ✓ reduced fines for non-production
- Reduced coal costs through accurate blending
- Reduced maintenance costs
  - elimination of sampling system
  - reduced corrosion and cokefaction in pipes
  - ✓ reduced downtime to remove slags

Payback estimated at 1.5 to 2 years



# **Phase and Structural Analysis of Coal**





### What is X-ray diffraction (XRD)?







- Versatile, nondestructive analytical technique
- Identification and quantitative determination of the various crystalline phases of compounds present in powdered and solid samples
- Quantification of the amorphous content

#### Mineral identification in coal



Fast phase ID of minerals in coal and coal related materials compared to microscopy

- Raw coal sample with high mineral content
  - Graphitic carbon (C)
  - Quartz (SiO<sub>2</sub>)
  - Kaolinite (Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>)
  - Calcite (CaCO<sub>3</sub>)
  - Dolomite (CaMg(CO<sub>3</sub>)<sub>2</sub>)
  - Siderite (FeCO<sub>3</sub>)
  - Anatase (TiO<sub>2</sub>)

Ash



### Mineralogical quantification of coal



None destructive analysis of the coal/ash ratio

Control erosion and abrasion of the mills by monitoring mineral content

- automatable
- operator independent
- non-destructive
- no chemicals required
- easy sample preparation



### Characterization of graphitic carbon



- Process of graphitization g (heat treatment) courses an increase in the degree of ordering within crystal structure of graphitic carbon
- Changes within lattice parameters d<sub>002</sub> and crystallite size L<sub>c</sub>
- d<sub>002</sub> can be used as indicator for the graphitization g











#### **CubiX<sup>3</sup> Minerals**

- Industrial diffractometer
- Fulfills modern international safety standards
- Dust protection for rough environments
- Analysis time of less then 5 minutes
- Handling of all common sample holder rings
- Ready for automation





- Robot automation
- Sample via airtube
- **Automatic sample** preparation
- Analytics
- Result via LIMS



# 3D imaging - Computed tomography (CT)



#### **Combined CT - XRD**



- Computed Tomography (CT) as an analytical tool for material science has been mostly restricted to dedicated CT-instruments or large scale facilities
- We will demonstrate CT measurements on coal samples performed on an Empyrean multipurpose diffraction platform





#### **Technical details**













# Computed tomography (CT) on coal





Sample size: 12 x 12 x 8 mm



Mineral distribution

Pore size distribution

Mineral size distribution

#### **Heat treatment of coal samples**



- Samples were heat treated to simulate the char process
- Comparison of volume, void, composition changes



| Parameter                 | Room temperature    | 950°C              |
|---------------------------|---------------------|--------------------|
| Size (mm)                 | 5.4 x 6.6 x 11.2    | 4.8 x 5.9 x 10.1   |
| Volume (mm <sup>3</sup> ) | 399.168             | 286.032            |
| Shrink factor volume (%)  | 100.0               | -28.336            |
| Size (mm) [CT]            | 7.18 x 7.94 x 11.91 | 6.61 x 7.25 x 10.8 |
| Volume (mm³) [CT]         | 353.1               | 287.51             |
| Shrink factor (%) [CT]    | 100.0               | -18.575            |

# **Density distribution**



Coal with different densities = Colored



Inclusions/cracks = Black





#### Introduction



- Coal is often graded and priced according to the concentration of sulfur, phosphorus, volatile materials and ash content
- Traditionally, the inorganic content has been quantified (often with XRF) by analyzing coal ash
  - sample preparation is extremely time consuming
  - multiple sample preparation steps introduce errors
     & contaminants



# **Analysis process**





#### **Application example**



#### Procedure

- coal standards acquired (Alpha & SABS)
- 2. the standards were dried
- 3. the standards were milled

- 4. the standards mixed with wax
- the mixtures were pressed into pellets
- 6. the standards were measured on an Epsilon 3<sup>x</sup>



| Condition | Elements              | kV | μА   | Measurement<br>Time (s) | Medium | Filter    |
|-----------|-----------------------|----|------|-------------------------|--------|-----------|
| 1         | Sr                    | 30 | 300  | 60                      | Air    | Ag        |
| 2         | K, Ca, Ti, Fe & Ba    | 12 | 600  | 60                      | Air    | Al (thin) |
| 3         | Na, Mg, Al, Si, P & S | 6  | 1000 | 120                     | Helium | none      |

# **Spectrum examples**







| Condition | Elements              | kV | μΑ   | Measurement<br>Time (s) | Medium | Filter    |
|-----------|-----------------------|----|------|-------------------------|--------|-----------|
| 1         | Sr                    | 30 | 300  | 60                      | Air    | Ag        |
| 2         | K, Ca, Ti, Fe & Ba    | 12 | 600  | 60                      | Air    | Al (thin) |
| 3         | Na, Mg, Al, Si, P & S | 6  | 1000 | 120                     | Helium | none      |

# **Calibration examples**







#### **Calibration results**



| Compound                       | Concentration Range (wt%) | RMS (wt%) | LLD (ppm) |
|--------------------------------|---------------------------|-----------|-----------|
| Na <sub>2</sub> O              | 0.014 - 0.29              | 0.0131    | 150       |
| MgO                            | 0.025 - 0.43              | 0.0111    | 100       |
| $Al_2O_3$                      | 0.86 – 11.27              | 0.1480    | 55        |
| SiO <sub>2</sub>               | 1.6 – 17.66               | 0.2810    | 45        |
| $P_2O_5$                       | 0.007 - 0.14              | 0.0067    | 40        |
| S                              | 0.51 - 3.58               | 0.0764    | 10        |
| K <sub>2</sub> O               | 0.029 - 0.215             | 0.0060    | 12        |
| CaO                            | 0.044 - 1.87              | 0.0232    | 8         |
| TiO <sub>2</sub>               | 0.06 - 0.63               | 0.0055    | 7         |
| MnO                            | 0 – 0.02                  | 0.0006    | 7         |
| Fe <sub>2</sub> O <sub>3</sub> | 0.147 – 3.815             | 0.0395    | 6         |
| SrO                            | 0.001 - 0.033             | 0.0010    | 2         |
| BaO                            | 0.004 - 0.042             | 0.0017    | 20        |

#### **Precision results**



| Compound                       | Average Concentration (wt%) | 1σ Standard Deviation (wt%) |
|--------------------------------|-----------------------------|-----------------------------|
| Na <sub>2</sub> O              | 0.26                        | 0.009                       |
| MgO                            | 0.23                        | 0.007                       |
| $Al_2O_3$                      | 8.05                        | 0.014                       |
| SiO <sub>2</sub>               | 15.12                       | 0.044                       |
| $P_2O_5$                       | 0.042                       | 0.004                       |
| S                              | 1.40                        | 0.003                       |
| K <sub>2</sub> O               | 0.24                        | 0.002                       |
| CaO                            | 1.43                        | 0.012                       |
| TiO <sub>2</sub>               | 0.35                        | 0.001                       |
| MnO                            | 0.021                       | 0.0003                      |
| Fe <sub>2</sub> O <sub>3</sub> | 1.75                        | 0.004                       |
| SrO                            | 0.014                       | 0.0002                      |
| BaO                            | 0.036                       | 0.001                       |

# **Summary**



- Accurate determination of ash, phosphorus and sulfur content is possible without time-consuming ashing procedures
- Inexpensive solution for:
  - 1. mine/pit management
  - 2. stockpile sorting
  - 3. load-in control (specification checking)
  - 4. coal yard management
  - 5. blending



# PANalytical get insight

#### Contact us:

paul.omeara@panalytical.com
uwe.konig@panalytical.com